
An overview of Thalassaemias and Complications

Haemoglobin

Haemoglobin is the most abundant protein in blood, and exists as three main types in normal adults:

HbA ($\alpha_2\beta_2$) - 97% HbA₂ ($\alpha_2\delta_2$) - 2.5% HbF ($\alpha_2\gamma_2$) - 0.5%

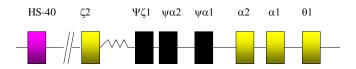
Approximately 400 different haemoglobin variants have been identified with 1 - 5% individuals in the world having a haemoglobin variant.

Definitions

• Thalassaemia

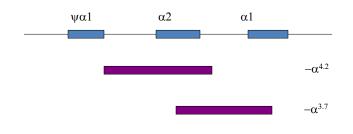
- Quantitative defects in globin chain synthesis
 - alpha globin expressed in fetus and throughout life
 - beta globin expressed not expressed in fetus
- All forms of thalassaemia seem to give some degree of protection against malaria

Thalassaemia Syndromes

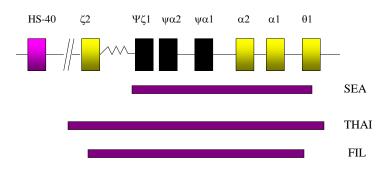

- Thalassaemia major
 - results in death without regular blood transfusions from an early age
 - also called transfusion-dependent thalassaemia
- Thalassaemia intermedia
 - Significant anaemia and splenomegaly, but managed without regular, monthly transfusions
 - Also called non-transfusion dependent thalassaemia
- Thalassaemia carrier
 - Asymptomatic but changes on blood count
 - Also called thalassaemia trait, thalassaemia minor

lpha thalassaemia

- Commonest single gene disorder in world
- alpha thalassaemia trait very mild anaemia, small red cells
- HbH disease moderate hemolytic anemia, rarely needing transfusions
- Hb Bart's Hydrops fetalis severe intra-uterine anaemia causing fetal death


α -globin Gene Cluster

• On chromosome 16p



$\alpha^{\scriptscriptstyle +}$ thalassaemia due to deletions

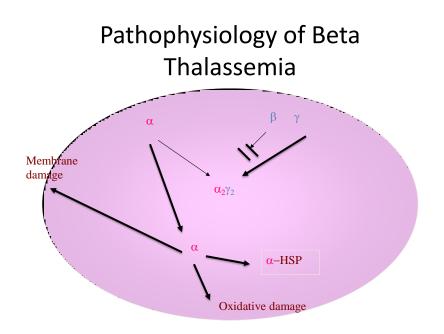
Most forms of thalassaemia result from large deletions

 α^0 thalassaemia due to large mutations

Pathophysiology of α thalassaemia

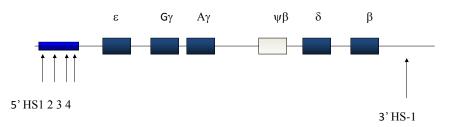
- Hb Bart's Hydrops Fetalis
 - No functioning α globin genes
 - Fetus unable to synthesise fetal haemoglobins from about 8 weeks gestation
 - γ chain tetramers form (Hb Bart's) which do not release oxygen
 - Progressive fetal anaemia and death at 20-30 weeks gestation
- HbH disease
 - One functioning α globin gene (or equivalent)
 - Moderate/mild haemolytic anaemia
- alpha thalassaemia carrier
 - 3 or 4 functioning α globin genes
 - asymptomatic

Hb Bart's Hydrops Fetalis



Diagnosis of α thalassaemias

- Carriers identified by
 - Low MCH and MCV
 - Normal HbA2 level
 - No iron deficiency
 - Confirmed if necessary by DNA analysis
- HbH disease
 - Parents carriers
 - Blood film + HbH bodies
 - DNA analysis
- Hb Bart's hydrops fetalis
 - Parents carriers
 - Fetal anaemia on scans
 - DNA analysis


Beta thalassaemia syndromes

- Reduced beta globin production, but alpha globin continues to be made at same rate
- unpaired alpha globin damages developing erythroblasts
 - membrane
 - enzyme defects
- ineffective erythropoiesis
 - death of developing red cells
- moderate reduction in life-span of circulating red cells (haemolysis)

β globin cluster

- Found on short arm of chromosome 11
- Two main types of mutation
 - β^0 thalassaemia no beta globin produced
 - $\beta^{\scriptscriptstyle +}$ thalassaemia beta globin production reduced

Genetics

- More than 150 different beta thalassaemia mutations
- Different mutations predominate in different parts of the world
- Some common mutations
 - HbE (codon 6, GAG-AAG, glu-lys) (beta⁺⁺)
 - IVS 1-5, G-C (severe beta⁺)

Severity of beta thalassaemia

- β⁰ mutations produce usually produce more severe forms of thalassaemia, but not possible to reliably predict severity from genotype
- Thalassaemia major: β^0/β^0 , β^0/β^+
- Thalassemia intermedia: β^0/β^+ , β^+/β^+ , β^+/β^{++}
- Some factors known to lessen severity
 - co-inheritance of α thalassemia
 - increased ability to make HbF

Diagnosis of beta thalassaemia major

- Neonatal screening no HbA present in cord/neonatal blood
 - Most cases picked up in UK on neonatal screening
- Family studies parents, siblings
- DNA analysis
- Blood tests high/100% HbF, severe anaemia, microcytosis, nucleated reds
- Clinical picture

Clinical Features of beta thalassaemia major

- Failure to thrive/poor growth
- pallor, jaundice
- hepatosplenomegaly
- if not transfused
 - bone disease expanded skull, maxillary hyperplasia, pathological fractures
 - extramedullary haemopoiesis
 - heart failure, death

Facial features of thalassemia major

Beta Thalassaemia Major

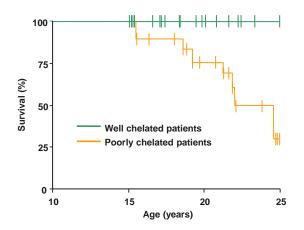
Beta Thalassaemia Major

Blood Transfusion in Beta Thalassaemia Major

- When to start
 - clinical decision, not based purely on haemoglobin level
 - usually between 6-12 months
 - poor growth, feeding
 - development of hepatosplenomegaly
 - steadily falling Hb with increasing age
- Frequency
 - 2-5 weekly, usually 4 weekly in UK
 - determined by symptoms, social factors

Blood Transfusion in Beta Thalassaemia Major

- Volume of transfusion
 - aim for pre-transfusion Hb 9-10.5g/dl
 - post-transfusion <15g/dl
 - vol = desired increment x mass in kg x 3 (if haematocrit of transfused blood 65%)
 - usually 10-15 ml/kg over 3-4 hours
- Hepatitis B vaccinations before starting transfusions


Blood Transfusion in Beta Thalassaemia Major

- Type of blood
 - leucodepleted
 - matched for ABO, Rhesus D, CcEe, Kell
 - negative for any alloantibodies
- Automated red cell exchange
 - reduces frequency of transfusions, iron loading
 - increases cost, donor exposure, infection risk

Iron Chelation in Beta Thalassaemia Major

- Each unit blood contains about 250mg iron
- Without chelation, majority of patients die before 20 yrs
- Starting
 - ferritin >1000microg/l
 - 10-20 transfusions
 - three years old

Chelation therapy and survival

The probability of survival to at least 25 years of age in poorly chelated patients was just one-third that of patients whose iron levels were well managed

Brittenham GM et al. N Engl J Med 1994;331:567-573. © Massachusetts Medical Society, with permission

Splenectomy in Beta Thalassaemia Major

- Optimal transfusion from an early age often avoids splenomegaly
- Periods of reduced transfusion can result in irreversible splenomegaly
- Splenectomy if LUQ pains, transfusion requirement >220ml/kg/year, hypersplenism
- Vaccinations, penicllin

Other Treatment Options

- Increased HbF production
 - butyrates/short-chain fatty acids
 - hydroxyurea
 - Erythropoietin
- Haematopoietic stem cell transplantation
- Emerging treatments
 - Gene therapy
 - Activin receptor lib ligand traps

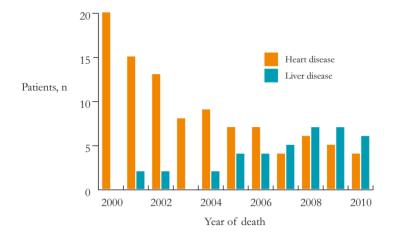
Cardiac Complications

- Severe heart disease can be asymptomatic
- symptoms include palpitations, breathlessness, epigastic pain etc
- investigations CXR, ECG, echo, MUGA, MRI
- treatment continuous iv dfo, ACE inhibitors, diuretics, digoxin, amiodarone

Endocrine Complications

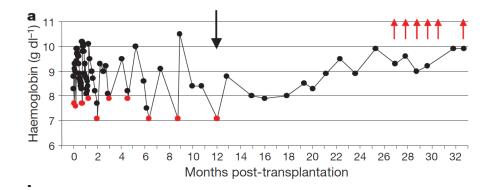
- Poor growth multifactorial
- Delayed puberty hypogonadotrophic hypogonadism
- Hypothyroidism severe iron overload
- Impaired glucose tolerance
- Hypoparathyroidism usually in adults
- Infertility common in women
- Osteoporosis

Osteoporosis


- Increasingly recognised in optimally treated patients
- Nearly all patients have low BMD on DEXA scanning
- Lower BMD if diabetic, male, hypogonadal
- Exact significance unclear, although pathological fractures increasesd
- Increased BMD following bisphosphonates

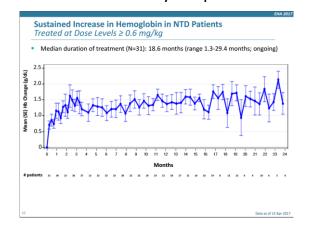
Causes of Death in Thalassaemia

Cardiac causes	171	71%
Infections	28	12%
Liver disease	15	6%
Tumors	7	3%
Endocrine complications	6	3%
Thrombosis	3	1%
Unknown	3	1%
Anaemia	2	1%
Other causes	5	2%


(Italian patients born from 1960-1984)

Deaths in Greece in Thalassaemia Major

Gene Therapy


- Lentiviral β globin gene transfer to adult with transfusion dependent HbE/ β thalassaemia
- Transfusion independent for more than two years – Hb9-10g/dl
 - 1/3 derived from gene transfer
- Emergence of dominant clone due to activation of HMGA2 by vector insertion
 - Concerns about long-term risk of malignancy
 - Unclear how much success depends on chance activation of proto-oncogene

Cavazzana-Calvo et al. Nature 2010:467;318-323

Luspatercept

Trap for TGF-β superfamily ligands
– Reduces ineffective erythropoiesis

Reduction in Transfusion Burden in TD Patients *Treated at Dose Levels* ≥ 0.6 mg/kg

Median duration of treatment (N=32): 14.2 months (range 0.7-27.2 months; ongoing)

*6 patients discontinued before completing 12 weeks, not shown

14

 Transfusion reduction from 12 weeks pre-treatment to any 12-week interval on treatment

Data as of 13 Apr 2017

EHA 2017

Summary

- Thalassaemia common worldwide but relatively rare in UK
- Alpha thalassaemia
 - HbH disease which is usually mild
 - severe fetal anaemia and death
- Beta thalassaemia
 - thalassaemia major requiring regular transfusions and iron chelation
 - new treatments being developed