Neuropsychological Assessment in Patients with Sickle Cell Disease

Dr. Heather Rawle (Consultant Clinical/Health Psychologist, GSTT - Adults)
Gary Bridges (Counselling Psychologist, KCH - Adults)
Dr. Natalie Cook (Clinical Psychologist, KCH - Paediatrics)

Thanks to Dr. Caroline Johnson (GSTT) and Dr. Hatal Bhatt (GSTT)

Why Assess?

- Individuals with SCD of all ages are at higher risk of cerebrovascular complications, such as **acute ischaemic and haemorrhagic stroke** and **silent cerebral infarcts (SCI)**

- This can result in cognitive deficits that impact upon their communication with providers, medical adherence, academic and occupational achievement and overall quality of life.
Strokes in SCD

<table>
<thead>
<tr>
<th>Chances of having first stroke by</th>
<th>SS</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 years of age</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>30 years</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td>45 years</td>
<td>24%</td>
<td>10%</td>
</tr>
</tbody>
</table>

(CSSCD, Ohene-Frempong et al, 1998)

- 250 times more common in SCD than in other children
- If untreated, risk of recurrence (ischaemic stroke) = 50-92%
- Will often damage both grey and white matter

→ Leading cause of morbidity and mortality in SCD.

Commonly encountered patterns of cognitive impairment after stroke

- **Aphasias** - impairments of language
- **Apraxias** - impairments that affect limb movement and speech
- **Visuoperceptual and visuospatial disorders** - disorders of visual recognition (agnosias), visuospatial abilities and visual neglect
- **Memory impairments**
 - for events prior to the stroke (retrograde memory)
 - ability to lay down new memories (anterograde memory)
 - the inability to retain and manipulate information for a short time (working memory)
Commonly encountered patterns of cognitive impairment after stroke

- **Executive dysfunction** – impairments in conceptual reasoning, cognitive flexibility, planning, problem solving, etc.
- **Attentional impairments** and **speed of information processing**
- **General intellectual functioning** (i.e. I.Q)
- **Personality / behaviour changes**

Silent Cerebral Infarcts (SCI)

- **Silent cerebral infarcts** (“silent stroke”)
- **Most common** form of neurological injury in children with SCD
 - Prevalence increases during childhood:
 - 10% in infants
 - 28% by age 5
 - 37% by age 15
 - Prevalence continues to increase throughout adulthood
 - Typically occur within **small vessels**, generally confined to deep **white matter**, and involve non-motor areas of the brain (esp. frontal cortex)
 - Increased risk for further overt and silent strokes.
Impact of SCI in SCD – Cognitive difficulties

- Global cognitive dysfunction, particularly non-verbal IQ
 - Processing speed
 - Working memory
 - Executive function (planning, problem solving, organisation, inhibition, response monitoring, mental flexibility)
 - Attention, divided attention / switching
 (Berkelhammer et al, 2007; Mackin et al, 2014; Rawle et al, 2010; Vichinsky et al, 2010)

- In children, difficulties become more apparent in later stages of primary education, when intellectual demands increase
 - Poor school/work performance
 - Deficits in measures of executive functioning and attention/concentration
 - Difficulties with paying attention, short-term memory, organising and planning school work, initiating tasks and staying focused on them, regulating emotions, self-monitoring.

Impact of SCI in SCD – Cognitive difficulties

- Cognitive impairments tend to be more severe when patients have abnormal MRIs, but significant cognitive impairment in some patients with normal MRIs
 - MRIs not sophisticated enough to detect some brain changes; poor perfusion; effects of pain
 - Level of anaemia is more predictive (Vichinsky et al., 2010).
Standards of Care

- Sickle Cell Disease in Childhood: Standards and Guidelines (2006); Standards for Management of Sickle Cell Disease in Childhood (2008)
 - Regular neuropsychological screenings and monitoring of school attainment should be carried out on a regular basis
 - Patients should have access to a neuropsychologist within the MDT.

- Standards for the Clinical Care of Adults with Sickle Cell Disease in the UK (draft 2017); Peer Review Standards for Sickle Cell Disease (updated draft 2017)
 - Patients should have access to neuropsychology via a defined pathway

What is a neuropsychological/cognitive assessment

- Interview
 - Medical, Educational, Employment, Family, Developmental, Language, Migration history – reasons and stressors
 - Coping, Views of problems (memory diary)
 - Mood, Pain

- Information from other sources
 - Health/Social
 - Educational records/Feedback from school
 - HCPs and family members
 - Research literature
What is a neuropsychological/cognitive assessment

- **Assessment of cognitive domains**
 - Memory, Attention, Processing Speed, Language, Executive Function, Visual-Spatial/Perception, Intellectual Functioning,
 - Word Reading, Reading Comprehension, Mathematics, Listening Comprehension, Spelling

- **Interpretation and recommendation**

- **Feedback and liaison**
 - Patient/Family/Carers
 - HCPs
 - Employers/School/College/SENCo
 - Can provide support for Education Health Care Plan (EHCP)
 - Onward referrals

Current Service Model in Paediatric Sickle Cell & Thalassaemia Service (KCL)

Referral to Clinical Psychology

- **Psychology Assessment**
 - Semi-structured interview (90 mins)
 - Liaison with educational services
 - Psychometric assessment

- **Neuropsychological Assessment**
 - Cognitive Ability (2-3 hours)
 - Scholastic Achievement (1-2 hours)

- **Further assessment if required**

Follow-up

- F/U appointment offered to all families to discuss assessment findings
- Recommendations of appropriate educational, psychological or medical interventions
- Liaison with school/educational services (EHCP)
- Sign-posting/referral to other services where appropriate (e.g. SALT, OT)

Discharge
Tests used with Adults

- IQ:
 - WAIS-IV UK; WAIS-III UK; shortened versions
- Premorbid IQ
 - TOPF; WTAR
- Memory
 - WMS-IV UK; WMS-III UK; RBMT
- Executive Functioning:
 - Hayling and Brixton; Verbal & Category Fluency; BADs – key search, zoo map; Trail Making Test (TMT A&B); DKEFS Trails
- Visuospatial:
 - VOSP
- Attention:
 - WAIS subtests; Test of Everyday Attention
- Tests of Effort:
 - WAIS subtests

Tests used with Children & Adolescents

- Cognitive ability/IQ:
 - WPPSI (age range: 2:6 – 7:7)
 - WISC-V; WISC-IV (age range: 6:0 – 16:11)
 - WAIS-IV UK (age range: 17:0+)
- Scholastic Achievement
 - WIAT-II (age range: 4:0 – 16:11)
 - WIAT-III (age range: 4:0 – 25:11)
- Further assessment
 - NEPSY-II (age range: 3:0 – 16:11)
 - Attention and executive functioning; Language; Memory and Learning; Sensorimotor; Social Perception; Visuospatial Processing
 - Children’s Memory Scale (age range: 5:0 – 16:11)
 - D-KEFS (age range: 8:0 – 89:00)

Psychometric assessment:
- Connors 3rd Edition (Self-report/Parent/Teacher versions)
- Behaviour Rating of Executive Function (BRIEF) (Parent/Teacher versions)
- Strengths and difficulties questionnaire (SDQ) (Self-report/Parent/Teacher versions)
- Revised Children’s Anxiety and Depression Scale (RCADS) (Self-report/Parent)
Complexities – SCD and stroke

- Double time for interview:
 - Language, culture, education
 - How SCD affects person – pain, fatigue, expectations

- Strokes:
 - Hemiparesis/plegia, sensory, arousal, dysphasia, dysarthria, apraxia, ataxia, fatigue, sleep, epilepsy, pain, cognitive impairments

- SCD:
 - Cultural, educational background, language
 - Multiple strokes/silent strokes over time
 - Pain, medication, depression, anxiety
 - Lack of info from others as often isolated
 - Premorbid IQ? (lack of info)
 - Impact of SCD on school ach; expectations of self

Costs and time

- Neuropsychological testing is a scarce resource
 - Not widely available and time consuming
 - Therefore has not regularly been integrated into routine clinical care for patients with sickle cell disease

- The Vichinsky et al (2010) study involved a 6-hour neuropsychological battery, administered by a trained neuropsychologist

- Future? Computerised testing
 - NIH Toolbox - Cognition Battery (NIHTB-CB) (www.healthmeasures.net)
 - Need to ensure this contributes to a meaningful assessment when using it in clinical setting
 - Q-Interactive testing (http://www.helloq.co.uk/home.html) using iPads
 - Create unique, client-centric batteries at both the instrument and subtest levels
 - Improves administration accuracy and speed, provides real time scoring, and allows for flexibility in just a few simple taps.
To screen or not to screen...

- **If stroke history and reporting concerns:**
 - Indicates comprehensive assessment (so screen not required)
 - SCD patients tend to be younger – stroke screening measures could still lack sensitivity (risk false negatives)

- **If silent strokes/no stroke history:**
 - Lack of sensitivity (risk false negatives)
 - Not in context of cognitive assessment → meaningless
 - Don’t have enough information to formulate why patient is presenting as they are → cannot make meaningful recommendations
 - Ethical dilemma
 - What happens if they have a poor score, but no service for a comprehensive assessment?
 - Self fulfilling prophecy
 - Low score → anxiety → perform worse

Factors affecting screening scores

- e.g. why may the patient present with a **low processing speed** score?
 - Fatigue
 - Low mood
 - Anxiety
 - Trauma
 - Pain
 - Analgesia
 - Other medications
 - Effects on brain of stroke/silent stroke
 - Part of global picture of lower scores e.g. Learning disability
 - Malingering
Conclusions

- Clinicians should be aware of the risk of cognitive impairment in patients with SCD, even among those with normal MRI scans – this may impact on patient’s understanding, decision-making, and adherence to treatments.

- Neuropsychological assessments for patients with SCD are useful to highlight cognitive impairments that may otherwise be unnoticed by clinicians, and be a useful way of identifying those who require support (e.g. at school, university, work).

- Simple screening tools are not appropriate for clinical use in this population.

Questions?