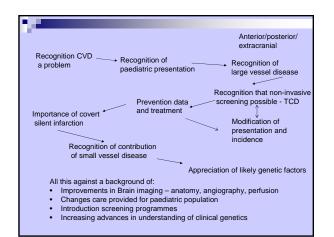
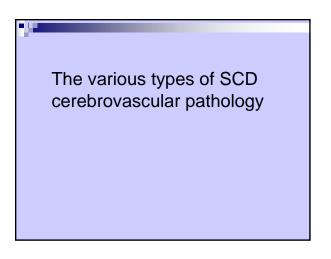

Cerebrovascular Disease in SCD Large vessel disease: Stenosis or occlusion 'Small vessel disease' Moya- Moya + collaterals Venous sinus thrombosis

Stroke in Childhood (excluding perinatal) 2 – 5/100 000 children/year Stroke with SCD (probably) regarded as second most common cause in UK. Most common cause in London area

200x more common than in a child without a haemoglobinopathy

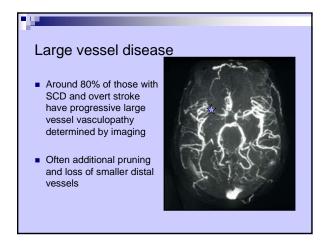
'Setting the scene' – not a unusual problem in SCD

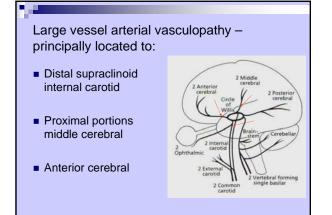

- 25% of HbSS some form of CVA by age 45
- 10% of HbSC
- 10 11% a clinically evident effect of ischaemic damage
- 17 25% (estimates) covert 'silent' ischaemic damage – most are anterior or posterior vascular 'border zone' lesions

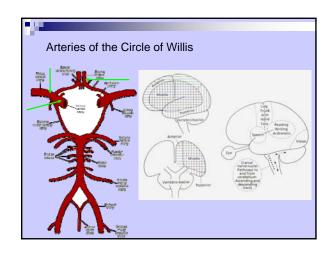


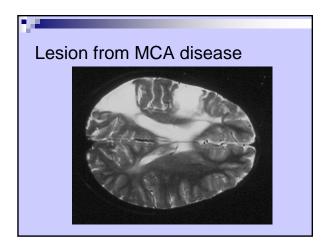
In SCD

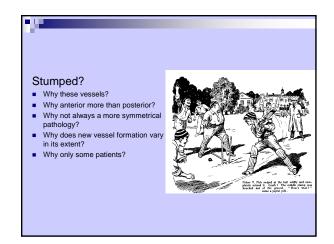
- Peak age presentation for a clinically overt ischaemic event = 2-5 years of age
- Peak age for haemorrhage 20-30 years (aneurysms)
- Haemorrhagic stroke much less common in childhood

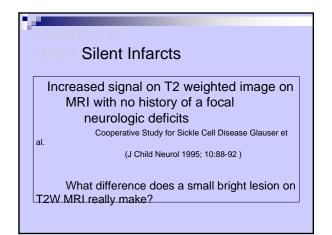

HISTORICAL PERSPECTIVE Cerebrovascular pathology in SCD

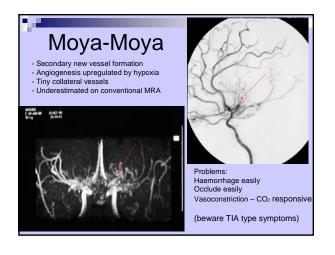





Overt Paediatric clinical stroke (focal signs lasting >24hours)

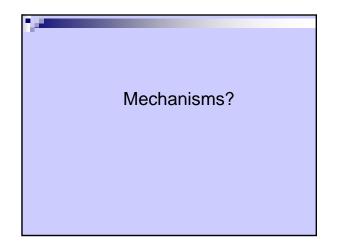

- Usually due to large vessel occlusion hemiparesis, monoparesis, hemianaesthesia, visual field defects, aphasia, C.N. palsies, acute change of behaviour
- Can be 'stroke in progression' stuttering course, gradual worsening of deficit, new focal abnormalities appear
- Occasionally recovery 'complete' over longer period of time. More typically – 'completed stroke' with permanent sequalae
- Although there are factors which make it more likely to happen commonly 'out of the blue', previously well child, no previous complications of SCD – 1st presentation of any overt medical problem
- Still patients, not born in UK, where their 1st presentation and recognition of SCD, is a neurological event

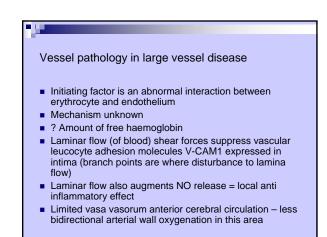




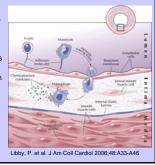
	ce of Silent (erformed Sur			
Reference	Number of Silent Cerebral Infarcts	Total Number of Patients	Prevalence	95% Confidence Interval
Pegelow, 2002	58	266	21.8%	16.8-26.8
Bernaudin, 2000	23	155	15%	9.4-20.6
Kirkham, 2000	16	64	25%	14.4-35.6
Total	97	485	20%	16.4-23.6

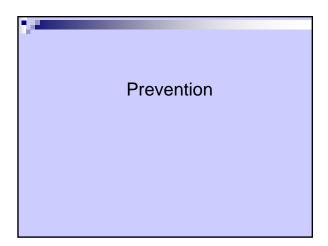
Morbidity of Silent Cerebral Infarcts

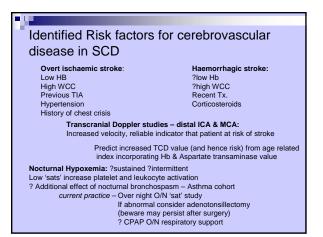

- Global IQ and specific cognitive domains scores are lower than children with SCA and normal MRIs
- The rate of "grade" failure is twice that of children with normal MRIs and five times higher than sibling control
- Lesion size influences the magnitude of global IQ loss in silent cerebral infarcts J of Child Neurology 2002; 17:891-895


Cases with abnormal (< 1.5 SD below age e			
Domain	Silent Infarcts (n=19)	SCD with no Infarcts (n=45)	Sibling (n=18)
Attention/ Executive	53%	13%	0%
Viso-Spatial/ motor	30%	33%	0%
Memory	13%	10%	6%
Language	20%	23%	6%
Any domain	79%	36%	11%

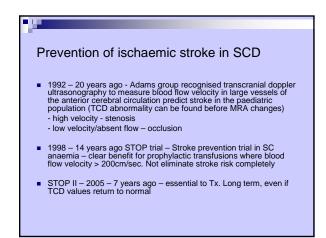
Transient ischaemic attack (TIA) in SCD

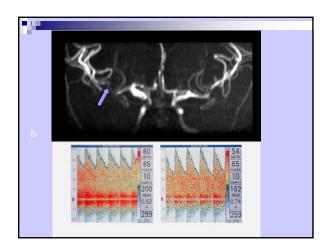

- Can be 'stroke in progression'
- TIA definitions vary deficit lasts < 24hours
 (? < 48 hours for vertebral or basilar symptoms dizzy, ataxia, diplopia, visual disturbance)
- Often a 'warning' of subsequent stroke Thus assess, investigate and consider transfusion with some urgency


Vessel pathology process


- Abnormal interaction results in intimal proliferation and disconuity of internal elastic lamina
- With intimal proliferation get increased amounts of smooth muscle cell, fibroblasts and fibrous tissue
- A concomitent thrombus formation at site of intimal damage – perpetuates the cycle of intimal damage
- Actual acute event due to narrowing, thrombus, distal embolic effect of dislodged thrombus and vessel spasm

Nutritional factors?


- Role of supplementation to improve 'endothelial function'?
- Antioxidants?
- Exclude pernicious anaemia
- Role of homocysteine levels?



The Case for Preventing First Stroke in SCD

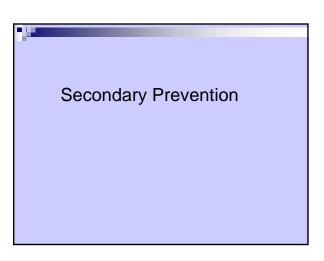
- Damage unpredictable
- Outcome in advanced vessel disease is poor
- SCD good target for a prevention strategy
 - $\hfill\square$ Newborn identification of disease pre CV disease
 - Excellent prediction of stroke and CVD with non invasive, low risk procedure -TCD
 - Once risk identified effective preventive treatment is available

TCD Risk	Stratificatio	on
Category	t-ICA/MCA TAMV (cm/s)	Stroke Risk
Normal	< 170 cm/s	0.25 - 1%/yr
Conditional	170 - 199	1 - 3%/yr
Abnormal	≥ 200 cm/s	10%/yr
Inadequate	Unable to obtain	1 - 3%/yr
	Category Normal Conditional Abnormal	TAMV (cm/s) Normal < 170 cm/s

UK childhood stroke guidelines 2004 (RCP) Primary prevention – HbSS or Hb Sthal TCD screen yearly from 12 months (debated), using appropriately trained personnel (from 3 years of age NHS standards and guidelines document 2006) Children with ICA or MCA velocity > 200cm/sec on TCD study should be offered long term blood transfusions

Concern in technical difficulty age 1-3 years. Many start age 3 Appropriately trained personnel not universally available

Debate about how often to screen What is optimal re-screening frequency?


- Not all children with stroke have had documented abnormal TCD
 - Interval too long between screening?
 - Different pathophysiology for some?
 - TCD technique missed small stenotic lesion?

When plan consider:

- Younger age more likely to become pathological
- If initial value conditional or pathological
- Monitor more closely within a family group if pathology recognised in any member

Summary: TCD Screening Intervals • Factor in age, prior TCD results <10 years, high conditional:</td> repeat within 6 wks, if unchanged then 3 mth <10 years, low conditional:</td> repeat within 4 mth if unchanged then 6 mth >10 years, high conditional: repeat within 3 mth if unchanged then 6 mth >10 years, high conditional: repeat within 3 mth if unchanged then 6 mth >10 years, low conditional: repeat within 6 mth

if unchanged then 1 yr If other stroke risk factors, such as sibling with abnormal TCD or stroke, child should be screened more frequently (JL Kwaitkowski – Philadelphia)

Secondary prevention

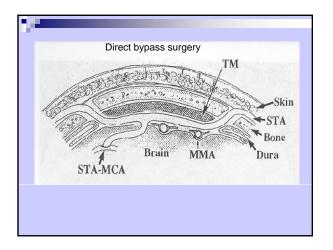
Once first stroke – risk of recurrence high Range 20 – 92%

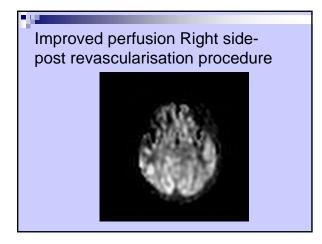
- 2004 Childhood stroke guidelines:
- In children with SCD, regular blood transfusion (every 3-6 weeks) should be undertaken to maintain HbS at <25% and Haemoglobin at 10-12.5g/dl (decreases recurrence risk to 10-20%).
 After 3 years, a less intensive regime maintaining HbS at <50% might be sufficient for stroke prevention
- Children with SCD who cannot receive regular blood transfusions because
 of alloimmunization, autoantibody formation or non-compliance with
 transfusion or chelation might be considered for treatment with hydroxyurea
- Children with Moya-Moya appearances should be referred for evaluation to a centre with expertise in evaluating patients for surgical revascularisation
- Advice should be offered regarding preventable risk factors for arterial disease in adult life (smoking, exercise and diet)
- Blood pressure should be measured annually to screen for hypertension

Hydroxyurea Subject of current multi-centre trial Role still uncertain Inhibits polymerization of HbS, increases % HbF, improves RBC deformability, improves RBC survival Can cause general myelosuppresion and induce chromosomal changes

Aspirin Variable response to Aspirin in population – high group of none responders Not a drug without risk in children - 'Reyes' Risk of haemorrhage from underappreciated new vessel formation Current randomised trial START

(Rochester USA)


How do you manage progression despite transfusion regime? - i.e. New clinical event or just vessel or perfusion changes on MR 1 'Optimise' transfusion regime - ensure tight compliance - Target lower HbS ?% 2 Exclude additional complications emergence of hypoxaemia, lifestyle and diet changes 3 Consider hydroxyurea, BMTx. 4 Consider revascularisation


Surgical revascularisation – provide some intracerebral supply from external circulation

- Role in patients with SCA unknown
- anecdotal benefits documented
- Classical non-sickle Moya-Moya (Japanese) see 80% improvement in extent of vascular compromise and symptoms
- Currently offered to patients with
 - Proximal occlusive arterial disease, usually with
 - progressive changes and Moya-Moya
 - Hypoperfusion affecting uninfarcted tissue
 - Clinical symptoms despite blood transfusion (i.e. adjunct to long-term transfusion)

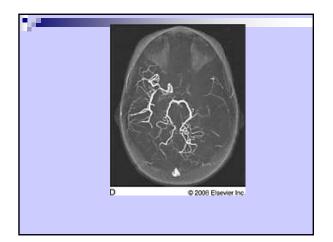
Surgical procedural options • Indirect bypass surgery Encephalo-duro-arterio-synangiosis EDAS Encephalo-myo-arterio-synangiosis EMAS Encephalo-duro-arterio-myo-synangiosis EDAMS Multiple Burr hole approach (France)

- Direct bypass surgery Superficial temporal artery to Middle cerebral STA-MCA
- Combination of indirect and direct procedures

Genetics of stroke

- Highly penetrant single gene disorder where additional multiple genes (polygenic) each exert a small influence on risk to the phenotype
- Each genetic influence may have a small but key effect
- Incomplete penetrance of genetic expression
- Thus individuals show different combinations of genetic and environmental influences

Stroke in SCD - Familial Predisposition


- Cases of stroke in multiple family members with SCD (link between TCD values)
- Sib-pair analysis
 Increased risk vs. general SCD population
- HLA type and stroke risk Certain HLA-B, DR, DQ alleles associated with increased or decreased risk
 No evidence to link genetically determined prothrombotic disorder

Driscoll, et al. Blood 2003;101:2401-2404 Styles, et al. Blood. 2000;95:3562-7

Areas of interest:

- Non sickle large vessel disease polymorphisms found in gene for phosphodiesterase 4D (PDE4D) – controls level of smooth muscle proliferation and immune function in vessels
- Polymorphisms of angiotensin gene (blood pressure effect)
- Vascular cell adhesion molecule V-CAM1 gene = high frequency of single nucleotide polymorphisms (SNP) in Afro-Caribbean pop. One of the variant alleles Gly1238Cys associates with protection from stroke in the Jamaican population
- SNP studies in candidate genes identified a group of genes which, where present together, when considering HbF level in addition, find a high correlation with patients who have suffered stroke

- Acardi Goutiers syndrome 4 types
 - Intracranial Calcification looks like congenital infection
 - Older child 'regressive' form
 - 'Lupus like' syndrome
 - Intracerebral large artery disease
- TREX1 intracellular alarm system normally triggered by viral nucleic acids
- Here triggered by persons own nucleic acids, given right circumstances

